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Abstract. A general theory of critical sound propagation, including phonon-spin-energy coupling, is studied
in anisotropic magnets above their transition temperature. The Kawasaki weak singularity in the ultrasonic
attenuation is found as a nonasymptotic effect. A new nonasymptotic regime similar to the one in the binary
mixture is also determined. The role of coupling constants and the bare relaxation times in establishing
the dominance region of particular terms, is discussed.

PACS. 05.70.Jk Critical point phenomena – 62.65.+k Acoustical properties of solids

1 Introduction

The sound mode couples to a bilinear function of spin op-
erators above the critical temperature TC , and the atten-
uation coefficient is proportional to the imaginary part of
a four-spin response function [1–3]. The resulting strong-
singularity in the attenuation coefficient explains the ex-
perimental results in magnetic metals [4,5]. In order to
interpret the observed weakly-singular or non-singular be-
havior of the attenuation coefficient in magnetic insulators
Kawasaki [6] postulated that the interaction responsible
for the critical attenuation can be considered as combining
two parts. The first part was described above, the second
one is a linear coupling of the longitudinal sound mode to
the spin-energy density. In magnetic insulators the second
contribution is believed to be dominant. A phenomeno-
logical approach gives then the sound attenuation coeffi-
cient in terms of the energy response function (the heat
capacity). The latter is assumed to decay via spin-lattice
relaxation, with the spin-lattice relaxation time showing
only a weak divergence of the specific-heat type. On the
other hand, the renormalization-group analysis of dynam-
ical models of coupled spin and energy fields [7,8] showed
that the singular part of the energy response function con-
tains a term proportional to the above mentioned four-
spin response function and, what is more, sufficiently close
to the transition temperature TC , the nonconserved en-
ergy relaxes with the same characteristic exponent as the
nonconserved order parameter zE = z = 2 + cη. Thus, the
assumptions about the simple separability of both contri-
butions to the ultrasonic attenuation seem to fail near TC .
Also the postulated shape of the energy response function
is not correct in the asymptotic regime. Consequently, a
general theory including both types of acoustic couplings
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as well as the interaction between energy and the order
parameter would be highly desirable for a deeper under-
standing of the critical attenuation in magnets. In this
paper, we present such a theory for an Ising-like magnet
coupled to an isotropic elastic medium and an energy field.
We start with a set of nonlinear Langevin equations gov-
erning the temporal behavior of nonconserved spin den-
sity, the longitudinal acoustic phonon, and nonconserved
spin-energy density, which are assumed to provide a com-
plete macroscopic description of the system near TC . We
shall limit our discussion to the disordered phase.

Performing some decoupling transformations and then
extracting an irreducible with respect to phonon as well
as to the energy propagators four-spin response function,
we will be able to preserve also relevant nonasymptotic ef-
fects in the critical sound propagation. Our approach not
only leads to a more precise expression for the acoustic
self-energy, which in turn shows a novel behavior in a cer-
tain regime-resembling the critical sound attenuation in a
binary liquid, but also provides considerable insight into
the mechanism of ultrasonic attenuation near a critical
point. It turns out that it is the ratio of bare spin-lattice
and critical relaxation times, as well as their ratios to the
sound frequency, which determine the dominance region of
a particular sound attenuation behavior, not the relative
strength of the coupling constants. On such a basis we
propose a way of experimentally finding the spin-lattice
relaxation time in magnetic metals. The latter quantity is
of key importance in the process of Curie-point writing in
magneto-optical recording.

The outline of this paper is as follows: in Section 2
the model is presented and a general expression for the
acoustic self-energy is given. In Section 3 we discuss the
asymptotic as well nonasymptotic regimes for the sound
attenuation coefficient. The role of coupling constants and
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relaxation times is also investigated. A method for deter-
mining the spin-lattice relaxation time from the ultrasonic
and hypersonic data in magnetic metals is proposed.

2 Formalism

The entropy functional for our system may be written as
[7,9]

H =
1

2

∫
ddx

{
rS2 + (∇S)2 + ũS4 + C12

(∑
α

eαα

)2

+ 2C44

∑
α,β

e2
αβ + C−1

S ε2 + g
∑
α

eααS
2

+fεS2 + wε
∑
α

eαα

}
, (1)

where S(x) denotes the one-dimensional spin variable,
ε(x) is the spin-energy density, and eαβ(x) are compo-
nents of the strain tensor (they may be written in terms
of phonon modes [10]). CS is the spin heat capacity
(kBTC = 1 is assumed) and Cαβ stand for the bare elas-
tic constants. The first three terms in (1) describe the
magnetic contribution, the forth and fifth represent elas-
tic energy in the harmonic approximation, and the sixth
term comes from the lowest-order expansion of the en-
tropy functional with respect to the energy fluctuations.
The other terms describe interactions. In addition to the
coupling of the longitudinal sound mode to two spin fluc-
tuations (with the bare coupling constant g) we have taken
into consideration the linear coupling of the sound mode
to the energy, described by a coupling constant w. The
εS2 term is responsible for critical behavior of the specific
heat [7].

The Langevin equations defining the dynamics of the
model are given by [9]

Ṡk = −Γ
δH

δS−k
+ ξk, (2a)

Q̈k = −
δH

δQ−k
−Dk2Q̇k + ηk, (2b)

ε̇ = −γ
δH

δε−k
+ ϕk, (2c)

where Qk denotes the longitudinal phonon normal coor-
dinate (in the isotropic model only longitudinal phonons
are coupled to the spin system); ξk, ηk, and ϕk are the
Gaussian white noises with variances related to the bare
damping terms Γ,Dk2, and γ by the Einstein relations.
Only the bare spin-lattice relaxation rate γ/CS is taken
into account in the relaxation of the energy, and the heat
diffusion is neglected.

Correlation and response functions of the model can
be expressed most conveniently in the path-integral for-

malism [11,12] with a Lagrangian

L
(
S, S̃,Q, Q̃, ε, ε̃

)
=

∫
ω

∑
k

{
Γ S̃k,ωS̃−k,−ω

+Dk2Q̃k,ωQ̃−k,−ω + γε̃k,ωε̃−k,−ω

− S̃k,ω

(
iωS−k,−ω+Γ

∂H

∂Sk,ω

)
−ε̃k,ω

(
iωε−k,−ω+γ

∂H

∂εk,ω

)
− Q̃k,ω

[
(−ω2 + iDk2ω)Q−k,−ω +

∂H

∂Qk,ω

] }
, (3)

where auxiliary response fields S̃k,ω, Q̃k,ω, and ε̃k,ω are
introduced. In (3) there is no contribution from the Ja-
cobian as it can be set to one by defining for the step
function Θ(0) = 0, which excludes accusal terms in the
perturbation theory [13].

Next performing the Gaussian transformations

ε→ ε−AQ− BS2 − CQ̃−DS̃2,

ε̃→ ε̃− EQ̃−F S̃2, (4)

and

Q→ Q− GS2 −HS̃2,

Q̃→ Q̃− IS̃2, (5)

withA,B, C . . . – the frequency and wave vector dependent
coefficients, we are able to obtain the acoustic self-energy
in the form

Σ(k, ω) = w2k2D0(ω)

+ 2 (g − wfD0(ω))
2
k2〈S̃2

k,ωS
2
−k,−ω〉

L
irrG0

, (6)

where D0(ω) = (C−1
S − iω/γ)−1, S̃2

k,ω = (S̃S)k,ω, S2
k,ω =

(S2)k,ω and the brackets denote an expectation value cal-

culated with the effective spin Lagrangian L containing
non-local strain-mediated [9,10] as well as energy-density-
mediated interactions the most important of which is

S̃2
k,ωS

2
−k,−ω with the renormalized coupling

u(ω) = ũ− 2f2D0(ω)

−2 (g − wfD0(ω))
2
k2G0(k, ω)

where G
−1
0 (k, ω) = G−1

0 − w2k2D0(ω), G0 = (c2k2 −
iDk2ω − ω2)−1, and c2 = C11 is the square of the lon-
gitudinal velocity (unitary mass density is assumed).

In (6) the four-spin response function is irreducible
with respect to the phonon lines G0. We can now pro-
ceed in the standard way [10,14] replacing the strongly
irrelevant parameters in G0 by zero. If we also restrict
our analysis to the “weak-coupling” limit [10,15] i.e. we
assume the couplings g and w to be small then we may re-

place 〈. . . 〉Lirr by 〈. . . 〉L1 where the effective LagrangianL1

is characterized by the coupling u1(ω) = ũ− 2f2D0(ω)−
2 (g − wfD0(ω))

2
k2G0(k, 0). Someone may ask why we

have not put the irrelevant coefficient γ−1 equal to zero,



A. Pawlak: New aspects of critical sound attenuation in magnetic... 181

either. However, if we did so we would obtain only asymp-
totic behavior characterized by the Murata exponent [1,2].
It turns out that the weak-singularity region predicted by
Kawasaki can only exist in our theory as a nonasymptotic
region. In order to extract this nonasymptotic behavior
from (6) we must leave γ−1 in D0 and note that due to
u(ω) the average 〈. . . 〉L1 is still reducible with respect to
D0(ω). It can be expressed in the form

〈S̃2
k,ωS

2
−k,−ω〉

L1 =
〈S̃2

k,ωS
2
−k,−ω〉

L1

irrD0

1− 2f2D0(ω)〈S̃2
k,ωS

2
−k,−ω〉

L1

irrD0

,

(7)

where 〈. . . 〉L1

irrD0
is irreducible with respect to D0 (and

with respect to G0 also). The last equation can be written
as

〈S̃2
k,ωS

2
−k,−ω〉

L1

irrD0
=

〈S̃2
k,ωS

2
−k,−ω〉

L1

1 + 2f2D0(ω)〈S̃2
k,ωS

2
−k,−ω〉

L1

·

(8)

Because 〈. . . 〉L1

irrD0
is a vertex function only now we can

replace γ−1 by zero [16] obtaining

〈S̃2
k,ωS

2
−k,−ω〉

L1

irrD0
=

〈S̃2
k,ωS

2
−k,−ω〉

LA

1 + 2f2CS〈S̃2
k,ωS

2
−k,−ω〉

LA
,

where LA is the action of the model A of Halperin et al.
[7,8] with uA = ũ−2f2CS−2g̃2c−2 where g̃ = g−wfCS .
The quantity 〈. . . 〉LA does not contain the irrelevant pa-
rameters and can be easily computed up to the required
order [2,10,14].

Let us notice here that such a procedure is applicable
only for a nonconserved energy field as for a conserved en-
ergy case (model C) D0 contains nonstatic relevant terms
and cannot be replaced by its static part in (8). Simi-

larly 〈S̃2
k,ωS

2
−k,−ω〉

L1

irrD0
must be calculated with a La-

grangian LC containing energy-generated dynamic inter-
actions. It is worth mentioning here that the asymptotic
behavior of the ultrasonic attenuation coefficient for model
C was studied by Drossel and Schwabl [17]. Making use of
some simplifications, adequate in this regime, they showed
that there is a small difference in the asymptotic scaling
functions in models A and C originating mostly from the
different dynamic scaling exponents z. The discussion of
nonasymptotic effects in the ultrasonic attenuation for a
crossover from a nonconserved to conserved energy field
will be given elsewhere and in the present paper only non-
conserved energy is considered.

Inserting the last relation into (7) one obtains

〈S̃2
k,ωS

2
−k,−ω〉

L1 =

〈S̃2
k,ωS

2
−k,−ω〉

LA

1 + 2f2 (CS −D0(ω)) 〈S̃2
k,ωS

2
−k,−ω〉

LA
,

and then from (6) we have

Σ = w2k2D0

+
2(g − wfD0)2k2〈S̃2

k,ωS
2
−k,−ω〉

LA

1 + 2f2 (CS −D0) 〈S̃2
k,ωS2

−k,−ω〉
LA
· (9)

The last equation can be transformed into the form

Σ/k2 =
2(g̃2 − iω̃g2)〈S̃2

k,ωS
2
−k,−ω〉

LA + w2CS

1− iω̃
(

1 + v〈S̃2
k,ωS

2
−k,−ω〉

LA

) , (10)

with ω̃ = ωCS/γ and v = 2f2CS . The ultrasonic atten-
uation coefficient which is proportional to the imaginary
part of the acoustic self-energy can be written as

α(ω, t)

ω2
=

(g̃2 + ω̃2g2)ImΨ + ω̃vg̃2 |Ψ |2 − 2ω̃g̃wfCSReΨ

c3 |1− iω̃ (1 + vΨ)|2
, (11)

with the singular part of the response function Ψ =

〈S̃2
k,ωS

2
−k,−ω〉

LA obeying the scaling relation

Ψ = t−αΦ′(y),

where t is proportional to the reduced temperature, y =
ωτc is the reduced frequency with τc = 1

Γ t
−zν the criti-

cal relaxation time of spin fluctuations. In the ultrasonic
experiments the wavelength is much longer than the cor-
relation length ξ, so kξ � 1 and Ψ can be evaluated for
k = 0. The scaling function Φ′ in the leading order in
ε = 4− d is given by [10]

Φ′(y)=
[
1+(y/2)2

]−α/4ν{ ν
α

+
i

y

[
i (1−iy/2)arctan(y/2)

−
1

2
ln
(
1 + (y/2)2

)]}
K4,

where K4 = (8π2)−1.
After neglecting the third term in the numerator of

(11) (which usually can be regarded as small [18]) this
equation can be written as

α(ω, t)c3

ω2
=

W1(ω)t−(α+zν)Im(Φ(y)/y) +W2t
−2α |Φ(y)|2

|1− ixΦ(y)|2
, (12)

with W1(ω) = 1
vΓ

(g̃2 + ω̃2g2), W2 = g̃2CS
vγS

, Φ = vΦ′, and

an additional frequency x = ω̃t−α reduced with the spin-
lattice relaxation time τSL = CS

γS
t−α.

3 Discussion

Equation (12) behaves in three different ways depending
on the relative size of t, ω and the coupling constants
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as well as the bare relaxation times τ0
SL = CS/γS and

τ0
c = 1/Γ . Asymptotically we obtain

α(ω, t) ∝ g̃2τ0
c ω

2t−(zν+α)ImΦ(y)/y , (13)

i.e. the strongly-singular behavior of the attenuation
coefficient described well by Murata-Iro-Schwabl theory
[1,2] in the renormalization group approach [19].

For τ0
c �

4vK4ν
2

α2 τ0
SL the Kawasaki type behavior [6] is

regained

α(ω, t) ∝ g̃2τ0
SLω

2t−2α |Φ(y)|2

|1− ixΦ(y)|2
, (14)

with the same proportionality factor (vc3)−1 as in (13).
Note that the square of the effective coupling constant
g̃2 is the same in both regimes, in contrast to the naive
expectations that they would be equal to g2 and w2, re-
spectively. The scaling function in (14) depends on two
reduced frequencies y and x but in the limit y −→ 0 it
converts into the classical relaxation function [20]

α(ω, t) ∝
ω2CS(t)τSLa

1 + ω2τ2
SLa

2
, (15)

where CS(t) = CSt
−α and the parameter a = v/v∗

(v∗K4 = α/ν + O(ε2) is the fixed point value of v) can
be easily eliminated by renormalizing τSL.

One may define another interesting regime for ω̃ � 1
(assuming also g ∼ g̃ ) when the second term in W1(ω)
dominates and the denominator in (12) plays a role. In
this new regime one finds

α(ω, t) ∝ g2τ0
c ω

2t−(zν−α)ImΦ(y)−1/y. (16)

which can be obtained from the asymptotic formulae by
replacing α→ −α, Φ→ Φ−1 (note also the different cou-
pling constant g instead of g̃). It is worth noting here
that this new regime is analogous to that of the binary
mixtures critical point behavior, where the coefficient of
attenuation is given by [21,22,14]

α(ω, t) ∝
−ωImCp(ω)

(ReCp)2
· (17)

with Cp(ω) as a frequency dependent specific heat at con-
stant pressure. Applying dynamical scaling for the specific
heat, the scaling law for the sound attenuation can be de-
rived

α(ω, t) ∝ ω2t−ρF (y) , (18)

with the critical sound attenuation exponent for binary
mixtures ρ = zν − α. The scaling function F differs from
the one in (16) mainly by a different exponent z which is
about 3.05 for the binary liquid universality class [22].

It may be interesting to find the ultrasonic attenuation
coefficient for vanishing coupling constant i.e. when g = 0
for the case with the phonon mode coupled only to the

energy-density fluctuations. In such a case, the earlier the-
ories predict only the Kawasaki type behavior described
by (14) but we obtain

α(ω, t)c3

ω2
= w2CS

×
τ0
c t
−(α+zν)Im(Φ(y)/y) + τ0

SLt
−2α |Φ(y)|2

|1− ixΦ(y)|2
, (19)

where the Murata-Iro-Schwabl term is still present and
can be dominant in the critical limit ω, t→ 0. There is no
t−(zν−α) type behavior in this case.

Similarly, if the bare coupling of phonon to the energy-
density fluctuation is zero we do not get only the strong
singularity of a Murata-Iro-Schwabl type. Instead, that of
(12) takes the form

α(ω, t)c3

ω2
=

g2 (1 + ω̃2)τ0
c t
−(α+zν)Im(Φ(y)/y) + τ0

SLt
−2α |Φ(y)|2

v |1− ixΦ(y)|2
,

(20)

with all three regimes present in this case.
As the vanishing of the bare coupling is not followed by

that of the effective one, then the above analysis implies
that it is the ratio of the bare relaxation times τ0

c /τ
0
SL, and

the ratio v/v∗ which determine the region of dominance of
a particular term in (12), rather than the relative strength
of w and g. In order that the Kawasaki type behavior
could be detected, there must be a frequency window for
the spin-lattice bare relaxation frequency ωSL = γ/CS

ω � ω0
SL � ω0

c

with ω the sound frequency and ω0
c = Γ the spin bare

relaxation frequency. If the first inequality is obeyed then
ω̃ = ω/ω0

SL � 1 and the “modified” Murata-Iro-Schwabl
behavior (16) does not appear. On the other hand, the
second inequality implies that for t > tcross the Kawasaki
term will be dominant for a sufficiently small crossover

temperature tcross = (
vτ0
c

4a2τ0
SL

)
1

zν−α .

It is evident that tcross is determined mainly by the
ratio of the bare relaxation times τ0

SL and τ0
c . In mag-

netic insulators like RbMnF3, MnF2 and Y3Fe5O12 the
spin-lattice relaxation time is known from the ultrasonic
attenuation experiments [23,24]. Considerable long spin-
lattice relaxation time of an order of 10−8 s was observed
near the phase transition in yttrium ferrite-garnet [24]. In
MnF2, Moran and Lűthi found τSL = 2.7 × 10−9 s for
t ≥ 10−3, i.e. it is long in comparison with the bare re-
laxation time for spin fluctuations which is about 10−11 s.
Thus, the inequality t > tcross was obeyed in the exper-
imental temperature range explaining the small critical
sound attenuation exponent ρ = 0.13 − 0.16 observed in
this crystal [25]. In RbMnF3 a rather fast, for an insulator,
spin-lattice relaxation time was found which varies from
4× 10−10 to 2× 10−10 s [23]. However, as determined by
inelastic neutron scattering experiments [26], τc varied as
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0.08× 10−10 < τc < 3× 10−10 s in the same temperature
range so that t > tcross was also satisfied in accord with a
rather small exponent ρ = 0.27−0.32 [25]. The experimen-
tal values of τSL for RbMnF3 and MnF2 are in qualitative
agreement with the theoretical estimates obtained by Hu-
ber [27] for antiferromagnetic insulators. One thing should
be pointed out here. Comparing equation (3a) in [23] with
equation (15) in the present work, it is evident that the
measured spin-lattice relaxation time corresponds to aτSL
in the present theory. The parameter a has not been de-
termined experimentally so far but it is obvious that it
can influence the actual value of τSL obtained from the
ultrasonic experiments as well as the crossover tempera-
ture.

Whereas in magnetic insulators τSL can be (at least in
principle) determined experimentally from the ultrasonic
data and compared with τc determined from inelastic neu-
tron scattering measurements, the situation in metallic
substances like rare earth metals is less favorable as large
sound attenuation exponents usually observed in metals
[4,25] give reason to believe that the sound attenuation
is dominated by Murata-Iro-Schwabl term (13) which in-
volves τc instead of τSL. There are few experimental meth-
ods allowing studies of the spin-lattice relaxation time in
magnetic metals near critical point. In electron spin reso-
nance the spin-lattice relaxation contributes, among other
processes, to the line width. It was possible to assess this
contribution in some metals for some temperature ranges.
Extrapolating for instance the magnetic resonance data of
Bloembergen [28] to the Curie temperature, one finds that
τSL ∼ 4× 10−11 s in nickel. Because of the lack of appro-
priate experimental tools, able to probe the spin-lattice
energy transfer rate mediated by the spin-orbit coupling,
only recently it was possible to determine the spin-lattice
relaxation time in rare earth. Vaterlaus et al. [29] were the
first to measure τSL in Gd using the pioneering technique
of time resolved spin-polarized photoemission. Applying
strong 10 ns laser heating pulses followed by 60 ps weak
probe pulses the spin-lattice relaxation time (averaged in
the temperature interval 45 < T < 225 K) was found to
be 100±80 ps [29]. This result is in a very good agreement
with recent theoretical estimation of τSL by Hűbner and
Bennemann [30] who found τSL = 48 ps for Gd. These re-
sults are also in accord with the expectations that in mag-
netic metals the spin-lattice relaxation times may be even
a few orders of magnitude shorter than the corresponding
ones in magnetic insulators and, hence, it is likely that in
magnetic metals τ0

SL and τ0
c are of comparable value mak-

ing it possible for the Murata-Iro-Schwabl term to prevail
in the critical sound attenuation. However, it would be of
great interest to get more experimental data on τSL as
well as the value of the parameter a in magnetic metals.
In a ferromagnet, τSL is also the time required to establish
a new equilibrium magnetization after a sudden change of
the lattice temperature. Thus, this quantity plays a crucial
role not only in the theory of dynamical response of ferro-
magnets but it is important in the technology of magneto-
optical recording as it determines, for instance, the max-
imum speed attainable in Curie-point writing. One way

of getting round the difficulty of the lack of experimen-
tal tools able to measure the very short relaxation times,
could be based on making use of the existence of the new
regime (16) in the critical sound attenuation. Let us ex-
plain it in more detail. As this regime can only be detected
for ω̃ � 1, and τ0

SL in magnetic metals is expected to be
very short, so it is only possible to probe this regime in the
nonhydrodynamic region (y � 1) where the sound atten-
uation saturates and the saturation value of α(ω), αsat, is
frequency dependent:

αsat ∝ ω1+α/zν (21)

whereas αsat in the (nonhydrodynamic) Murata-Iro-
Schwabl regime is described by

αsat ∝ ω1−α/zν . (22)

It easy to show that similar relations hold also for the
maximum of sound attenuation coefficient, αmax, which
occurs in the low temperature phase and which is even
more convenient to measure as it does not require pre-
cise determination of the critical temperature. The dif-
ference in the exponents is 2α/zν ' 0.2 and could be,
in principle, detected in accurate measurements. The in-
verse of the crossover frequency, where the behavior of
αmax changes from (22) to (21), would give then aτ0

SL,
and from the measurements of the specific-heat one could
assess the value of the parameter a. A disadvantage of
the method proposed is the necessity of combining the
ultrasonic attenuation measurements (ω < τ0

SL) with the
hypersonic data from the Brillouin scattering experiments
(high frequency region), as the spin-lattice relaxation fre-
quencies in magnetic metals lie above the ultrasonic fre-
quency range. An undoubtable virtue of this method is the
possibility of measuring the spin-lattice relaxation rate in
the bulk of a crystal not only in the skin depth (in met-
als the optical penetration depth is 10−6 cm and for the
microwave magnetic field in magnetic resonance it is of
order 10−4− 10−5 cm). Besides, the method is applicable
to both the ferromagnetic as well as the antiferromagnetic
materials near their transition temperature.

Finally, it is worth commenting on the Kawasaki term
in the attenuation coefficient. In our approach this term
is of the fourth order, whereas the other terms in (12)
are of the second order, in the coupling constants. But
there is no particular reason why only the limit v/v∗ → 0
should be considered. On the contrary, in this limit the
specific heat is nonsingular (in the accessible range of tem-
peratures), likewise the Kawasaki term in the ultrasonic
attenuation. From the point of view of physics, the case
with v/v∗ = O(1) where all terms in (12) can be treated
as of the second order in small coupling constants g and
w, is particularly interesting.

In our analysis we have neglected a small first-order
character of the phase transition common to the com-
pressible system [31]. Also, we would like to emphasize
that the above theory is limited neither to the systems
with only scalar spin nor to the magnetic phase transi-
tions. It could also apply to a crystalline solid and other
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systems – whenever the order-parameter dynamics is re-
laxational. However, near structural phase transitions a
comparison with experiments is complicated by additional
(more singular) contributions coming from the couplings
of the order-parameter with the shear strains.
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